To determine if there were differences in the total number of bac

To determine if there were differences in the total number of bacteria on the tongue (Bacterial Load), the total integer score for each sample was then tallied over all the probes on the array

and mean values were compared between controls and HIV infected groups. Similar to the Species Score, no statistically significant difference was detected in Bacterial Load between uninfected and infected groups (Figure 2B). In addition, we found that Species Score and Bacterial Load data were highly correlated in individual samples across all experimental groups see more and controls (Figure 2C). Although the Species Score and Bacterial Load data does not address proportional shifts in bacterial species between experimental groups and controls, the findings do indicate that the capacity of the lingual epithelium to support complex polymicrobial communities was not impaired by chronic HIV infection or the H 89 administration of PLX3397 in vitro ART. Figure 2 HOMIM-based analysis of bacterial growth in the lingual microbiome. (A) Comparison of the number of bacterial species (Species Score) detected by HOMIM assay on the tongue epithelium of healthy

HIV- controls, ART naive chronically HIV infected patients, and HIV infected patients on ART. Median values are shown in horizontal bars. (B). HOMIM-based comparison of total bacterial populations (Bacterial Load) on the tongue epithelium of HIV- controls and HIV + patient groups. (C) Correlation between Species Score and Bacterial Load data as determined by Spearman rank correlation coefficient analysis. Modulations in the lingual microbiome of HIV infected

patients To evaluate whether HIV infection was associated with alterations in the community structure of the lingual Oxymatrine microbiota in HIV patients, we next analyzed the phylogenetic distribution of species that were detected in the majority of subjects in each patient group (Figure 3). As observed in previous studies, Streptococcus species dominated the oral microbiome of healthy subjects [18–21], comprising ~38% of all species detected by HOMIM, followed by Veillonella (~19% of all species) and Rothia (~7% of all species). In total, 11 different genera were represented in the oral microbiome of at least one-half of all healthy controls. In contrast, 14 genera were detected in ART naive HIV infected patients, which included all of the genera detected in healthy controls as well as Megasphaera Eubacterium, and Solobacterium. Notably, higher representation of these 3 genera appeared to be counterbalanced by lower relative proportions of core commensal Streptococcus and Veillonella species.

Comments are closed.