However, the way in which these functions interact is poorly understood. Subjects (N = 30) viewed threatening or neutral images that could be either animate
(facial expressions) or inanimate (objects) in the context of a dot probe task. The amygdala showed responses to both emotional and animacy information, SBE-β-CD inhibitor but no emotion by stimulus-type interaction; i.e., emotional face and object stimuli, when matched for arousal and valence, generate comparable amygdala activity relative to neutral face and object stimuli. Additionally, a habituation effect was not seen in amygdala; however, increased amygdala activity was observed for incongruent relative to congruent negative trials in second vs. first exposures. Furthermore, medial fusiform gyrus showed increased response to inanimate stimuli, while superior temporal sulcus showed increased response to animate stimuli. Greater functional connectivity between bilateral amygdala and medial fusiform gyrus was observed to negative vs. neutral objects, but not to fearful vs. neutral faces. The current data suggest that the amygdala is responsive to animate and emotional stimuli. Additionally, these data suggest that the interaction
between the various functions of the amygdala may need to be considered simultaneously NVP-LDE225 supplier to fully understand how they interact. Moreover, they suggest category-specific modulation of medial fusiform cortex as a function of emotion.”
“The meso-2,3-butanediol dehydrogenase (meso-BDH) from S. marcescens H30 is responsible for converting acetoin into 2,3-butanediol during sugar fermentation. selleck compound Inactivation of the meso-BDH encoded by budC gene does not completely abolish 2,3-butanediol production, which suggests that another similar enzyme involved in 2,3-butanediol formation exists in S. marcescens H30. In the present study, a glycerol dehydrogenase (GDH) encoded by gldA gene from S. marcescens H30 was expressed in Escherichia coli BL21(DE3), purified and characterized for its properties. In vitro
conversion indicated that the purified GDH could catalyze the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol was not a substrate for the GDH at all. Kinetic parameters of the GDH enzyme showed lower K (m) value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, implying its physiological role in favor of 2,3-butanediol formation. Maximum activity for reduction of (3S/3R)-acetoin and oxidations of meso-2,3-butanediol and glycerol was observed at pH 8.0, while it was pH 7.0 for diacetyl reduction. The enzyme exhibited relative high thermotolerance with optimum temperature of 60 A degrees C in the oxidation-reduction reactions. Over 60 % of maximum activity was retained at 70 A degrees C.