(C) 2008 Elsevier Ireland Ltd and

the Japan Neuroscience

(C) 2008 Elsevier Ireland Ltd and

the Japan Neuroscience Society. All rights reserved.”
“Dendritic cells (DC), which are essential for inducing and regulating immune defenses and responses, represent the critical target for vaccines against pathogens such as foot-and-mouth disease virus (FMDV). Although it is clear that FMDV enters epithelial cells via integrins, little is known about FMDV interaction with DC. Accordingly, DC internalization of FMDV antigen was analyzed by comparing vaccine virus dominated by heparan sulfate (HS)-binding variants with FMDV lacking HS-binding capacity. The internalization was most efficient with the HS-binding virus, employing diverse endocytic pathways. Moreover, internalization relied primarily on HS binding. Uptake of non-HS-binding virus by DC was considerably less efficient, so much so that it was often difficult Selleck SIS 3 to detect virus interacting with the DC. The HS-binding FMDV replicated in DC, albeit transiently, which PF-6463922 was demonstrable by its sensitivity to cycloheximide treatment and the short duration of infectious virus production. There was no evidence that the non-HS-binding virus replicated in the DC. These observations on virus

replication may be explained by the activities of viral RNA in the DC. When DC were transfected with infectious RNA, only 1% of the translated viral proteins were detected. Nevertheless, the transfected cells, and DC which had internalized live virus, did present antigen to lymphocytes, inducing an FMDV-specific immunoglobulin G response. These results demonstrate that DC internalization of FMDV is most efficient for vaccine virus with HS-binding capacity, but HS binding is not an exclusive requirement. Both non-HS-binding virus and infectious Tacrolimus (FK506) RNA interacting with DC induce specific immune responses, albeit less efficiently than HS-binding virus.”
“GATA binding

protein 3 (GATA3) is an important regulator of central nervous system (CNS) development, but its expression pattern in the postnatal CNS has not been studied. In the present study, we examined the distribution of GATA3 mRNA in the mouse CNS at different postnatal stages by in situ hybridization. During the first 2 weeks of postnatal development, numerous GATA3-expressing cells were found in the intergeniculate leaf, ventral lateral geniculate nucleus, pretectal nucleus, nucleus of the posterior commissure, superior colliculus, inferior colliculus, periaqueductal grey, substantia nigra and raphe nuclei. Few notable changes in the profile of GATA3 expression occurred over this time period. As postnatal development progressed, however, GATA3 expression weakened, and was maintained in only a few regions of the adult CNS. Throughout the brain, we found that GATA3-expressing cells were NeuN-positive, and no colocalization with glial fibrillary acidic protein (GFAP) was observed.

Comments are closed.