coli. PriA selleck screening library belongs to the DExH family of DNA helicases and is well-conserved among sequenced bacterial genomes [3]. PriA is thought to recognize and bind to repaired DNA replication forks and D-loop recombination intermediates, facilitate assembly of the primosome complex by recruiting other primosome proteins, and catalyze duplex DNA unwinding using energy furnished by hydrolysis of ATP [4, 5]. Recruitment of PriB to a PriA:DNA complex stabilizes PriA on the DNA [6] and enhances its helicase activity through a mechanism that involves PriB’s single-stranded DNA-binding
activity [7]. Formation selleck chemical of a PriA:PriB:DNA complex leads to recruitment of DnaT, perhaps through physical interactions with PriB [6]. The function
of DnaT LY2606368 solubility dmso is not well understood, but it has been proposed that DnaT binding leads to dissociation of single-stranded DNA (ssDNA) from PriB through a competition mechanism, possibly exposing the ssDNA on the lagging strand template for reloading the replicative helicase, which ultimately leads to fork reactivation [8]. While studies of DNA replication restart pathways have focused primarily on the well-studied E. coli model organism, DNA replication restart has been shown to be important in other bacteria as well, including the medically important bacterium, Neisseria gonorrhoeae. N. gonorrhoeae is a gram-negative bacterium and the causative agent of gonorrhea. Infections are associated with a host inflammatory response that is mounted against the pathogen involving phagocytic cells such as polymorphonuclear granulocytes [9]. The L-gulonolactone oxidase ability of phagocytes to produce reactive oxygen species as an antimicrobial mechanism has been well-established, and commensal organisms such as lactobacillus species have been shown to produce and secrete H2O2, thus making it likely that N. gonorrhoeae faces considerable oxidative challenges in infected individuals [10, 11]. A variety of studies have examined the sensitivity of N. gonorrhoeae to
oxidative stress. Among them, one has demonstrated that N. gonorrhoeae can utilize enzymatic mechanisms such as catalase, peroxidase, and glutathione to protect against reactive oxygen species [12], another has shown that manganese is important for chemically scavenging superoxide [13], and yet another has revealed a role for DNA recombination and repair enzymes such as RecA, RecBCD, and enzymes of the RecF-like pathway in resistance to oxidative stress [14]. In addition, PriA has been shown to play a critical role in DNA repair and in resisting the toxic effects of oxidative damaging agents, suggesting that DNA replication restart pathways might play an important role in N. gonorrhoeae resistance to oxidative stress and overall pathogenicity [15].