Eventually, all planarians that selleck chemical Imatinib had abnormal blastemas progressed to form outgrowths and died (30�C38 dR; 116/121) (Figure S4). The observation of hyperplasia and outgrowths suggested that Smed-smg-1 might regulate neoblast proliferation. We checked the pattern of mitotic neoblasts at different time points during regeneration by using the Histone H3 phosphorylated at serine 10 (anti-H3P) antibody [21] (Figure 2C). We observed that Smed-smg-1(RNAi) planarians had a hyper-proliferative pattern of neoblast division with a higher (P<0.05) and clearly extended (P<0.01) 6 hR mitotic peak in response to initial injury and higher baseline levels of proliferation from 3 dR that fail to return down to normal levels (P<0.01).
Planarians were never depleted for neoblasts (Figure 2D) and showed higher levels of proliferation than controls even when death was imminent at 30 dR (Figure 2B). To understand whether the higher proliferative response to amputation in Smed-smg-1 RNAi animals was due to an increasing number of neoblasts present before amputation, we quantified the number of anti-H3P positive cells and the number of neoblasts positive for Smedwi-1, a marker for neoblasts [22], before amputation. We observed similar numbers of neoblasts (P>0.05) suggesting that differences in proliferation and neoblast number become apparent after amputation (Figure 2C and Figure S5). Our data suggest that Smed-smg-1(RNAi) results in a hyper-proliferative response after injury/amputation and that this eventually results in lethal outgrowths.
Given that Smed-smg-1(RNAi) led to the formation of unpigmented blastemas, suggesting a lack of terminal differentiation, we next wished to assess the detailed dynamics of neoblasts and their progeny in relation to this phenotype. Figure 2 Smed-smg-1 is required to restrict blastema growth during regeneration. Smed-smg-1(RNAi) blastema growth is characterised by an uncontrolled accumulation of cycling neoblasts and their progeny with differentiation defects Given the observation that Smed-smg-1(RNAi) animals showed unpigmented blastemas at 20�C25 dR (Figure 2A), we next assessed the ability of neoblasts to differentiate. We used markers expressed in neoblasts, recent neoblast progeny or older neoblast progeny. Consistent with the study that originally defined these markers [23], we could observe increasingly peripheral expression domains for the different markers of these three cellular compartments in 20 dR control Drug_discovery animals. Smedwi-1 (neoblast marker) is expressed deeper in the body; Smed-NB.21.11e (early post mitotic progeny) is expressed peripherally to Smedwi-1 and Smed-AGAT-1 (late post mitotic progeny), which is the most peripherally expressed (Figure 2E).