In fact, the second-best BLASTX hit, after BgP, is to a Eubacterium acidaminophilum FdhC (CAC39240.1) that has been characterized experimentally ( Graentzdoerffer et al., 2003). Formate could serve as an electron donor, carbon substrate, or both. A possible formate dehydrogenase gamma subunit gene (01341_2381) is found in a cluster with other ORFs
variously annotated as formate, thiosulfate, CH5424802 cost and tetrathionite reductase component genes; it is doubtful whether their in vivo roles can be deduced from the sequences alone. Phosphotransferase systems for carbohydrate uptake typically consist of one or two membrane (EIIC/EIID) and one or two cytosolic (EIIA/EIIB) components specific for a given carbohydrate, and two more general cytoplasmic components (EI and HPr), which may be in various combinations of fused and separate proteins (reviewed in Deutscher et al. (2006)). EI is a phosphoenolpyruvate:protein phosphotransferase, and HPr is a phosphocarrier transferring phosphate groups from EI to EIIA. In Gram-negative bacteria, phosphate groups are transferred in a cascade from phosphoenolpyruvate (PEP) to the membrane PTS components, and thence to a periplasmic carbohydrate
molecule, concomitant with its uptake. The phosphorylated carbohydrates are typically fed into the glycolysis pathway. PTS genes are also involved in transcriptional regulation of carbohydrate metabolism. 5-Fluoracil in vitro Only two sets
Selleck ZD1839 of putative PTS-related genes have been annotated in the BOGUAY genome. One is related to ascorbate uptake systems, and includes possible EIIA (ulaC, 00136_0633), EI (ptsI, 00136_0635) and HPr (hprK, 00136_0634) genes; the other is related to regulatory systems that are thought to coordinate nitrogen and carbon uptake, and includes putative EIIA (ptsN, 00726_1444) and HPr (hprK, 00726_1445) genes. No membrane-protein genes have been identified for either of these potential PTS systems, however; they may have strictly regulatory (or other) functions, or novel membrane components. The BOGUAY genome encodes a complete glycolytic pathway, and apparently two types of energy-generating electron transport pathways. In addition to the common oxidative phosphorylation pathway, in several possible variants, it possesses two different genes for most components of a putative Rnf complex, a potentially energy-generating ion pump whose detailed function is not yet well understood. This suggests that the BOGUAY strain may be able to access a range of electron donors and acceptors. Details are discussed immediately below. All glycolysis genes seem to be present in the BOGUAY genome (Table S6), with energy-conserving pyrophosphate-consuming enzymes apparently preferred to those hydrolyzing ATP. There are two possible pyrophosphate-dependent 6-phosphofructokinases (PFKs; Fig.