The zinc tin DAPT molecular weight oxide (ZTO) nanostructures in particular show promising results in electronics, magnetics, optics, etc., and may have great potential for application in the next generation of nanodevices. Anodic aluminum oxide (AAO) membrane-based assembling has been widely applied in recent years to produce nanowires with extremely long length and a high
aspect ratio and to provide a simple, rapid, and inexpensive way for fabricating nanowires as aligned arrays [1–3]. Zn-Sn-O (ZTO) is an interesting semiconducting material with a band gap energy (E g) of 3.6 eV [4, 5]. It has demonstrated great potential for application in various areas, such as transparent conducting oxides used as photovoltaic devices, flat panel displays, solar cells, and gas selleck chemical sensors,
due to its high electron mobility, high electrical conductivity, and low visible absorption [4–7]. Over the past decades, many research efforts have been made on the preparation of ZTO films. Recently, there have been very few references for our knowledge about ZTO. For ZTO nanowires, in a previous research, transparent semiconducting ternary oxide Zn2SnO4 nanowires were synthesized by the thermal evaporation method without any catalyst [8]. A mixture of SnO and ZnO powder was placed into a small ceramic boat, which was positioned at the center of a quartz tube. The temperature of the system was increased to 875°C and kept at this temperature for 30 min. Additionally, single-crystalline ZTO nanowires were prepared PD184352 (CI-1040) using a simple thermal evaporation
method [9]. A mixture of Zn and Sn powders (10:3 weight ratio) was used as the source material, and the whole experiment was performed in a horizontal tube furnace. The temperature at the tube center increased at a constant rate of 25°C/min from room temperature to reaction temperature (approximately 800°C), where it was then maintained for 90 min. During that period, metal powders were heated, vaporized, transported along the Ar flow, and finally deposited on the substrates to form the ZTO nanowires through reaction. Moreover, mixed oxide ZnO-Zn2SnO4 (ZnO-ZTO) nanowires with different sizes were prepared in a horizontal tube furnace by a simple thermal evaporation method [10]. Zn and SnO mixed powders (2:1 in molar ratio) were positioned in a ceramic boat, which was loaded into the center of the tube. The furnace was heated at a rate of 80°C/min up to and maintained at 800°C, 900°C, and 1,150°C for 30 min each, respectively. However, there have been a few reports on ZTO nanowires that have been fabricated with AAO membrane-assisted synthesis using electrodeposition and heat treatment methods. In this study, we report the synthesis and characterization of ZTO (ZnO with heavy Sn doping of 33 at.