Though a conserved triad of genes (I1-I3) are present in all clusters, WelI1 and WelI3 are sufficient to catalyze the resulting formation of cis and trans geometrical isomers when using a cell lysate. This first report of the isolation of both cis and trans geometrical isomers for the indole-isonitrile from both enzymatic assays using WelI1 and I3 from WI HT-29-1 and from metabolic extractions of two hapalindole-producing Fischerella strains, implies the conservation of stereochemical integrity towards members of the ambiguine and welwitindolinone products, and
opens new mechanistic possibilities to be studied. This study reports new findings which are essential to the overall elucidation of the unusual mechanism of biosynthesis of the hapalindole www.selleckchem.com/products/AZD1152-HQPA.html family of compounds, however, several steps still remain elusive. At present, only a few group V cyanobacterial genomes are available. However, as more genomes are sequenced from cyanobacteria known to produce hapalindole-type natural products and further enzymology is performed, the full biosynthetic pathway to all the hapalindole-type natural products may
be determined. A diverse range of oxygenases have been identified in the gene clusters reported in this study. The future enzymatic characterization of the oxygenases will most likely provide a foundation to elucidate the complex biosynthetic pathway of the hapalindole-type natural products. Methods Cyanobacterial culturing The cyanobacterial strains WI HT-29-1 and HW IC-52-3 were obtained from the University of Hawaii cyanobacterial buy Compound C culture collection, FS ATCC43239 from American Type Culture Collection and FA UTEX1903 from Culture Collection of Algae at the
University of Texas at Austin. All cyanobacterial Trichostatin A cost cultures were maintained in Blue-Green 11 (BG-11) medium Cyclin-dependent kinase 3 [25] (Fluka, Buch, Switzerland). WI HT-29-1 and HW IC-52-3 cultures were maintained at 24°C with 12 h light/dark cycles illuminated with 11 μmol m-2 s-1 of photons. FS ATCC43239 and FA UTEX1903 were illuminated with 80-100 μmol m-2 s-1 of photons on a 18:6 h light/dark cycle at 22°C. For extraction and isolation of biosynthetic intermediates, cyanobacterial cultures were grown in 18-20 L of BG-11 media and 4% CO2 mixed in air was bubbled through the cultures following inoculation. Genomic DNA extraction Prior to genomic DNA (gDNA) extraction, WI HT-29-1 and HW IC-52-3 cyanobacterial cells were first filtered using a 3 μm nitrocellulose membrane (Millipore, North Rhyde, Australia) to remove heterotrophic bacteria and washed with 200 mL of sterile BG-11 media. gDNA was extracted from WI HT-29-1 and HW IC-52-3 cyanobacterial cells following the protocol outlined in Morin et al. [26]. RNA was removed using 2 μL of ribonuclease A (≥70 Kunitz U/mg) and incubated at room temperature for 15 min.