(C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 3083-3091, 2010″
“Porous SiCOH materials integration for integrated circuits faces serious challenges such as roughening during the etch process. In this study, atomic force microscopy is used to investigate the kinetics of SiCOH materials roughening when they are etched in fluorocarbon plasmas. We show that the root mean square roughness and the correlation length linearly increase with the etched depth, after an initiation period. We propose that: (1) during the first few seconds of the etch process, the surface
of porous SiCOH materials gets denser. (2) Cracks are formed, leading to the formation of deep and narrow pits. (3) Plasma radicals diffuse through those pits and the pore network and modify the porous material at the bottom of the pits. (4) eFT508 molecular weight The difference in material density and composition between the surface and the bottom of the pits leads to a difference in etch rate and an amplification of the roughness. In addition to this intrinsic roughening mechanism, the presence of a metallic mask (titanium nitride) can lead to an extrinsic roughening mechanism, such as micromasking caused by metallic particles originating INCB018424 form the titanium
nitride mask. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3446820]“
“Purpose: To determine cerebral glutamate turnover rate in partial-ornithine transcarbamylase deficiency (OTCD) patients by using carbon 13 ((13)C) magnetic resonance (MR) spectroscopy.
Materials and Methods: The study was performed with approval of the institutional review board, in compliance with HIPAA regulations, and with written informed consent of the subjects. MR imaging, hydrogen 1 ((1)H) MR spectroscopy, and (13)C MR spectroscopy were performed at 1.5 T in 10 subjects, six patients with OTCD and four healthy control subjects, who were in stable
condition. Each received intravenous (13)C-glucose (0.2 g/kg), C1 or C2 position, as a 15-minute bolus. Cerebral metabolites were determined with proton decoupling in a parieto-occipital region (n = 9) and without proton decoupling in a frontal region (n = 1) during 60-120 minutes.
Results: Uptake and removal of cerebral glucose S3I-201 mw ([1-(13)C]-glucose or [2-(13)C]-glucose) were comparable in healthy control subjects and subjects with OTCD (P = .1). Glucose C1 was metabolized to glutamate C4 and glucose C2 was metabolized to glutamate C5 at comparable rates, both of which were significantly reduced in OTCD ( combined, P = .04). No significant differences in glutamine formation were found in subjects with OTCD (P = .1). [2-(13)C]-glucose and its metabolic products were observed in anterior cingulate gyrus without proton decoupling in one subject with OTCD.