We have developed such an approach using polychlorinated biphenyls (PCBs) and thyroid hormone (TH)
disruption as a case study. We reviewed and identified experimental animal literature from which we developed a low-dose, linear model of PCB body burdens and decrements in free thyroxine (FT4) and total thyroxine (TT4), accounting for 33 PCB congeners; extrapolated the dose-response from animals to humans; and compared the animal dose-response to the dose-response of PCB body burdens and TH changes from eleven human epidemiological studies. We estimated a range of potencies for PCB congeners (over 4 orders of AZD6738 magnitude), with the strongest for PCB 126. Our approach to developing toxic equivalency models produced relative potencies similar to the toxicity equivalency factors (TEFs) from the World Health Organization (WHO). We generally
found that click here the dose-response extrapolated from the animal studies tends to under-predict the dose-response estimated from human epidemiological studies. A quantitative approach to evaluating the relationship between chemical exposures and TH perturbations, based on animal data can be used to assess human health consequences of thyroid toxicity and inform decision-making. (C) 2012 Elsevier Inc. All rights reserved.”
“Despite well-known intestinal epithelial barrier impairment and visceral hypersensitivity in irritable bowel syndrome (IBS) patients and IBS-like models, structural and physical changes in the mucus layer remain poorly understood. Using a water avoidance stress (WAS) model, we aimed at evaluating whether 1) WAS modified gut permeability, visceral sensitivity, mucin expression, biochemical structure of O-glycans, and related mucus physical properties, and 2) whether Lactobacillus
farciminis treatment prevented these alterations. Wistar rats received orally L. farciminis or vehicle for 14 days; at day 10, they were submitted to either sham or 4-day WAS. Intestinal paracellular permeability and visceral sensitivity were measured in vivo. The number of goblet cells and Muc2 expression were evaluated by histology and immunohistochemistry, buy Tubastatin A respectively. Mucosal adhesion of L. farciminis was determined ex situ. The mucin O-glycosylation profile was obtained by mass spectrometry. Surface imaging of intestinal mucus was performed at nanoscale by atomic force microscopy. WAS induced gut hyperpermeability and visceral hypersensitivity but did not modify either the number of intestinal goblet cells or Muc2 expression. In contrast, O-glycosylation of mucins was strongly affected, with the appearance of elongated polylactosaminic chain containing O-glycan structures, associated with flattening and loss of the mucus layer cohesive properties. L.