0 Å resolution structure of photosystem II Nature 438:1040–1044P

0 Å resolution structure of photosystem II. Nature 438:1040–1044PubMedCrossRef Metz JG, Nixon PJ, Rogner M, Brudvig GW, Diner BA (1989) Directed alteration of the D1 polypeptide of photosystem II: evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to

the primary electron donor, P680. Biochemistry 28:6960–6969PubMedCrossRef Nixon PJ, Boehm M, Michoux F, Yu J, Komenda J (2010) Recent advances in understanding the assembly and repair of Photosystem II. Ann Bot 106:1–16 Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Phys 50:333–359CrossRef Noren GH, Selleck LY2874455 Boerner RJ, Barry BA (1991) EPR characterization of an oxygen-evolving photosystem II preparation from the transformable cyanobacterium

Synechocystis 6803. Biochemistry 30:3943–3950PubMedCrossRef Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coordin Chem Rev 252:259–272CrossRef Reinman S, Mathis P, Conjeaud H, Stewart A (1981) Kinetics of reduction of the primary donor of photosystem II. Influence of pH in various preparations. Biochim Biophys Acta: Bioenergetics 635:429–433CrossRef Schweitzer RH, Brudvig GW (1997) Fluorescence quenching by chlorophyll YH25448 molecular weight cations

in photosystem II. Biochemistry 36:11351–11359PubMedCrossRef Shinopoulos KE, Brudvig GW (2012) Cytochrome b 559 and cyclic electron transfer within photosystem II. Biochim Biophys Acta: Bioenergetics 1817:66–75CrossRef Siegbahn PEM (2006) O-O bond formation in the S4 state of the oxygen-evolving complex in photosystem II. Chem Eur J 12:9217–9227PubMedCrossRef Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS (2008) Computational studies of the O2-evolving complex of photosystem II and biomimetic oxomanganese complexes. Coordin Chem Rev 252:395–415CrossRef Stewart DH, Brudvig GW (1998) Cytochrome b 559 of photosystem II. Biochim Biophys Acta: Bioenergetics 1367:63–87CrossRef Stewart DH, Cua A, Chisholm DA, Diner BA, Bocian DF, Brudvig GW (1998) Identification of histidine Non-specific serine/threonine protein kinase 118 in the D1 polypeptide of photosystem II as the axial ligand to chlorophyll Z. Biochemistry 37:10040–10046PubMedCrossRef Stewart DH, Nixon PJ, Diner BA, Brudvig GW (2000) Assignment of the Qy absorbance bands of photosystem II chromophores by low-temperature optical spectroscopy of wild-type and mutant reaction centers. Biochemistry 39:14583–14594PubMedCrossRef Tan Q, Kuciauskas D, Lin S, Stone S, Moore AL, Moore TA, Gust D (1997) Dynamics of photoinduced electron transfer in a carotenoid–porphyrin–dinitronaphthalenedicarboximide molecular triad.

PubMedCentralPubMedCrossRef 43 Zhou R, Wei H, Sun R, Tian Z: Rec

PubMedCentralPubMedCrossRef 43. Zhou R, Wei H, Sun R, Tian Z: Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice. J Immunol 2007,178(7):4548–4556.PubMedCrossRef 44. Cario E, Podolsky DK: Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000,68(12):7010–7017.PubMedCentralPubMedCrossRef

45. Galdeano CM, Perdigon G: The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 2006,13(2):219–226.PubMedCentralPubMedCrossRef 46. Mohamadzadeh M, Olson S, GS-7977 mw Kalina WV, Ruthel G, Demmin GL, Warfield KL, Bavari S, Klaenhammer TR: Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci U S A 2005,102(8):2880–2885.PubMedCentralPubMedCrossRef 47. Plantinga TS, van Maren WW, van Bergenhenegouwen J, Hameetman M, Nierkens S, Jacobs C, de Jong DJ, Joosten LA, van’t Land B, Garssen J: Differential Toll-like receptor recognition and induction of cytokine profile by Bifidobacterium breve and Lactobacillus strains of probiotics. Clin Vaccine Immunol 2011,18(4):621–628.PubMedCentralPubMedCrossRef 48. Wells JM, Rossi O, Meijerink Fosbretabulin ic50 M, van Baarlen P: Epithelial crosstalk at the microbiota–mucosal interface. Proc Natl Acad Sci USA 2010,108((supple.

1)):4607–4614. pnas.1000092107: 1–8PubMedCentralPubMed 49. Abreu MT: Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes

intestinal function. Nat Rev Immunol 2010,10(2):131–144.PubMedCrossRef 50. Es-Saad S, Tremblay N, Baril M, Lamarre D: Regulators of innate immunity as novel targets for panviral therapeutics. Curr Opin Virol 2012,2(5):622–628.PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions JV, YT, SA and HK conceived the study; JV, EC, YT, HI, SA and HK designed the study; JV, EC, MGV, YT, TT, TI and SS did the laboratory work. JV, EC, MGV, YT, TT, TI, SS, SA and HK analysed the data. JV, MGV and HK wrote the manuscript; all read and approved the manuscript.”
“Background Cryptococcosis, a potentially fatal fungal disease, has primarily Carbachol been observed in immune-compromised individuals and mainly associated with Cryptococcus neoformans infection. It is now recognized that Cryptococcus gattii, once considered to be a variety of the Cryptococcus neoformans complex, is also capable of causing serious disease in immunocompetent individuals and animals [1, 2]. C. gattii has been associated with a number of tree species in tropical and subtropical regions [3]. More recently, C. gattii caused an outbreak that began in 1999 on Vancouver Island, British Columbia and has spread to mainland Canada and the US Pacific Northwest [4].