1):8223-30]”
“This study describes an innovative experimentally induced model of intervertebral disc degeneration. This innovative approach is based on the induction of extracellular matrix disorders in the intervertebral disc (IVD) using a diode laser. Sapitinib For this study, 15 one-year-old and five 30-month-old New Zealand White rabbits were used. Two procedures were tested to trigger IVD degeneration: needle aspiration (reference technique) and a laser approach. The IVD degeneration process
was assessed 20, 40, 60, 90 and 120 days after surgery by X-ray radiography (IVD height), magnetic resonance imaging (MRI) (T2 intensity of IVD signal) and histological analysis using modified Boos’ scoring. Our data indicate that a marked IVD degeneration was found compared with sham-operated animals regardless of the procedure tested. A significant decrease in disc height on X-ray radiographs was first demonstrated. In addition, MRI disc signals were significantly reduced in
both groups. Finally, a statistically significant increase in Boos’ scoring was found in both laser and aspiration-induced IVD degeneration. Interestingly, IVD degeneration induced by laser treatment was more progressive compared with aspiration. Moreover, the histological results indicated that laser-induced disc degeneration was quite similar to that obtained during the natural aging process as observed in 30-month-old rabbits. BTSA1 mw Our study describes the consistency of this innovative experimentally-induced animal Navitoclax concentration model of IVD degeneration. The radiological, MRI and histological data confirm its relevance. The histological examination indicates that IVD degeneration induced by laser treatment is comparable to the degenerative process observed during the onset of spontaneous IVD degeneration. This model could be a useful tool to help us validate biomaterial-assisted, cell-based, regenerative medicine strategies for the prevention and treatment of IVD degeneration.”
“Here, we sequenced the 5,419,609 bp circular genome of an Enterobacter aerogenes clinical isolate that killed a patient and was resistant to almost all current antibiotics (except gentamicin) commonly used to treat Enterobacterial infections, including
colistin. Genomic and phylogenetic analyses explain the discrepancies of this bacterium and show that its core genome originates from another genus, Klebsiella. Atypical characteristics of this bacterium (i.e., motility, presence of ornithine decarboxylase, and lack of urease activity) are attributed to genomic mosaicism, by acquisition of additional genes, such as the complete 60,582 bp flagellar assembly operon acquired “en bloc” from the genus Serratia. The genealogic tree of the 162,202 bp multidrug-resistant conjugative plasmid shows that it is a chimera of transposons and integrative conjugative elements from various bacterial origins, resembling a rhizome. Moreover, we demonstrate biologically that a G53S mutation in the pmrA gene results in colistin resistance.