Results and discussion Structural and morphological characterizat

Results and discussion Structural and morphological characterization The morphology of the synthesized product was characterized by FESEM which is shown in Figure 2a,b. Low and high magnifications of FESEM images demonstrate that the composite material has rod-shape morphology with average cross section of approximately 300 nm. The nanorods are grown in high density. Figure 2 Typical (a) low-magnification

and (b) high-resolution FESEM images of composite nanorods. The crystallinity of composite nanorods was studied this website by X-ray powder diffraction, and the results are illustrated in Figure 3. XRD spectrum of the nanorods exhibited diffraction peaks associated to Ag (JCPDS # 04–0783), Ag2O3 (JCPDS # 40–909), and ZnO (JCPDS # 36–1451) with wurtzite hexagonal phase. All the attributed peaks are suited with Ag, Ag2O3, and ZnO. There is no additional impurity peak in X-ray diffraction spectrum which indicates that the prepared nanorods are well-crystalline composite

of Ag, Ag2O3, and ZnO. Figure 3 Typical XRD pattern of composite nanorods. The chemical structure of composite nanorods was evaluated by FT-IR spectroscopy, shown in Figure 4a. FT-IR spectrum RG7420 mw of composite nanorods is measured in the range of 400 to 4,000 cm−1 and shown in Figure 4a. FT-IR spectrum showed absorption at 508, 1,626, and 3,442 cm−1. The band centered at 3,442 cm−1 (O-H stretching) and 1,626 cm−1 (O-H bending) is attributed to EVP4593 mouse moister absorbed [1, 7]. The very intense and broad band centered at 508 cm−1 is responsible for M-O (M = Zn and Ag) bonds [9–12]. Figure 4 Typical FT-IR and

UV–vis spectra of composite nanorods. (a) Chemical structure, (b) optical property, and (c) bandgap energy E g of composite nanorods. The optical property of the composite nanorods is important assets which was studied using a UV–vis spectrophotometer and shown in Figure 4b. UV–vis absorption spectrum displayed absorption peak at 375 nm without other impurity peak. The bandgap energy E g of composite nanorods was found to be around 3.30 eV from the tangent drawn at linear plateau of curve (αhν) 2 vs. hν (Figure 4c). Figure 5 shows XPS spectrum of composite nanorods which gives information about the bonding configuration and composition of the synthesized nanorods. XPS spectrum of composite almost nanorods displayed photoelectron peaks for Ag 3d5/2, Ag 3d3/2, O 1 s, Zn 2p3/2, and Zn 2p1/2 at binding energies of 368.0, 374.0, 532.2, 1,023.1, and 1,046.1 eV, respectively, which specifies that composite nanorods contain oxygen, zinc, and silver. These results are similar to the reported values in literature [18, 19]. The XPS data reflect that composite nanorods are made of Ag, Ag2O3, and ZnO. Figure 5 XPS spectrum of composite nanorods. Chemical sensing properties Composite nanorods were employed for finding phenyl hydrazine by measuring the electrical response of phenyl hydrazine using I-V technique [1–3].

coli strains into two genetically distinct groups, which differ <

coli strains into two genetically distinct groups, which differ significantly in their pathogeniCity. However, the direct role of esterase B, or of its B1 and/or B2 allozymes, in the virulence process remains unknown. The aims of this study were (i) to identify the gene encoding esterase B, (ii) to analyse its polymorphic counterparts in relation to E. coli clonal structure, (iii) to identify a potential physical link between this genetic locus and regions known to be associated with pathogeniCity find more in the E. coli genome,

and (iv) to test a potential direct role of esterase B in virulence in a mouse model of extraintestinal infection. Results and Discussion The acetyl esterase gene (aes) encodes esterase B Seven candidate genes encoding proteins with predicted esterase activity were identified, based on their respective PM and pI values, using the MaGe system [14] (aes [15], yddV, glpQ, ndk, yzzH and cpdA). Of these, Aes exhibited several characteristics particularly reminiscent of esterase check details B: i) a major esterase domain, ii) a theoretical pI of 4.72 for the K-12 strain protein (esterase B1, pI ranging from 4.5 to 4.8) and 5.18 for CFT073 protein (esterase B2, pI ranging from 4.85 to 5.0), and iii) the presence of a serine in the active site [9].

The inactivation of aes by gene disruption in K-12 MG1655 and CFT073 strains and complementation of the mutant strains with the aes gene confirmed that Aes was esterase B (Additional file 1: Fig. S1 and data not shown). We then studied the correlation between Aes sequences and esterase B electrophoretic polymorphism. The comparison of the Aes phylogenetic tree with the theoretical and observed pI Selleck GW786034 values and the esterase B electrophoretic mobilities (Mf values) for the 72 ECOR strains [10] is shown in Fig. 1. Overall analysis of the tree confirmed separation of esterase B into two variants: esterase B1 and esterase B2. Indeed, the Aes tree showed a clear Tenofovir in vitro distinction between Aes from the phylogenetic group B2 strains and Aes proteins

from other strains, separated by a long branch, well supported by bootstrap (83%). Moreover, the characterisation of the phylogenetic group B2, based on Aes polymorphism, was consistent with the pI and Mf values of esterase B2 (pI: 4.85 to 5.0 and Mf 57 to Mf 62), which were previously demonstrated to be specific to the phylogenetic group B2. Likewise, the characterisation of the phylogenetic groups A, B1 and D, based on Aes polymorphism, correlated with the pI and Mf values of esterase B1 (pI: 4.60 to 4.80 and Mf 68 to Mf 72) [10]. Amino-acid substitutions detected from the branches of the Aes tree were analysed taking into account variation in esterase B mobility and pI values [16] (Fig. 1). In most cases, for the Aes phylogenetic group B2 strains, substitutions of acidic to neutral, neutral to basic or acidic to basic amino acids corresponded to increases in pI (from 4.85 to 5.

Phylogenetic analysis Phylogenetic and molecular evolutionary ana

Phylogenetic analysis Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 4 [54]. C. salexigens EupR and other LuxR family proteins including well characterized members of different subclasses with a common LuxR-C-like conserved domain

and others different domains were included in the phylogenetic analyses. We also included some uncharacterized proteins with a high similarity to C. salexigens EupR, including two paralogs present in C. salexigens genome. The sequences were aligned with clustalW (1.6) using a BLOSUM62 matrix and manually edited. The phylogenetic tree was inferred using the Neighbor-joining method [55] and the evolutionary distances were computed using the Poisson correction method. The rate Tipifarnib research buy selleckchem variation among sites was modelled with a gamma distribution (shape parameter = 1.5) and all the positions containing gaps and missing data were eliminated only in pairwise sequence comparisons. The robustness of the tree branches was assessed by performing bootstrap analysis of the Neighbor-joining data based on 1000 resamplings [56]. DNA and protein sequences analysis The sequence of the C. salexigens genome is available at NCBI microbial

genome database (http://​www.​ncbi.​nlm.​nih.​gov/​genomes/​lproks.​cgi Ac N°: NC_007963). Sequence data were analyzed using PSI-BLAST at NCBI server http://​www.​ncbi.​nlm.​nih.​gov/​BLAST. Promoter sequences were predicted using BGDP Neural Network Promoter Prediction

http://​www.​fruitfly.​org/​seq_​tools/​promoter.​html. Signal peptides and topology of proteins were predicted using SMART 6 (http://​smart.​embl-heidelberg.​de/​; [57, 58]). Other programs and databases Interleukin-3 receptor used in proteins topology and functional analysis were STRING 8.2 (http://​string.​embl.​de/​; [38]) KEGG (http://​www.​genome.​ad.​jp/​kegg/​pathway/​ko/​ko02020.​html; [59]), Signaling census (http://​www.​ncbi.​nlm.​nih.​gov/​Complete_​Genomes/​SignalCensus.​html; [28, 29]), PROSITE (http://​www.​expasy.​org/​prosite/​; [60]), KU55933 in vitro BLOCKS (http://​blocks.​fhcrc.​org/​; [61]), Pfam (http://​pfam.​janelia.​org/​; [62]), CDD (http://​www.​ncbi.​nlm.​nih.​gov/​Structure/​cdd/​cdd.​shtml; [27]), InterProScan (http://​www.​ebi.​ac.​uk/​interpro/​; [63]), and Phobius (http://​www.​ebi.​ac.​uk/​Tools/​phobius/​; [64]). Acknowledgements This research was financially supported by grants from the Spanish Ministerio de Ciencia e Innovación (BIO2008-04117), and Junta de Andalucía (P08-CVI-03724). Javier Rodriguez-Moya and Mercedes Reina-Bueno were recipients of a fellowship from the Spanish Ministerio de Educación y Ciencia. References 1. Bremer E, Krämer R: Coping with osmotic challenges: osmoregulation trough accumulation and release of compatible solutes in bacteria. In Bacterial Stress Responses. Edited by: Storz G, Hengge-Aronis R.

Fractionation of membrane preparations was achieved using sucrose

Fractionation of membrane preparations was achieved using sucrose density gradients

as previously described [39]. Immunoprecipitation Immunoprecipitations with EPEC cell lysates were performed as previously described [39]. Briefly, 500 ng of affinity purified polyclonal anti-CesT antibody was added to 50 μl of Protein A conjugated agarose beads (Invitrogen) followed by washing as directed by the manufacturer. The antibody-bead mixture was blocked in phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM KH2PO4) supplemented with 1% (w/v) bovine serum albumin and then added to lysate preparations and incubated overnight at 4°C on a rotator. The samples MK0683 mouse were gently pelleted and the agarose beads were washed 3 times with PBS. The agarose beads were then exposed to 100 mM glycine (pH 2.2) to elute bound proteins and neutralized with 1 M Tris (pH 8.8) and then prepared for SDS-PAGE. Infection of HeLa cells HeLa cells [American Type Culture Collection (ATCC)] were seeded onto sterile glass coverslips at a density of 1 × 105 /ml, grown for 24 hrs and then infected with various EPEC strains at a multiplicity of infection of 50 for 3 hours. The infected HeLa cells were then prepared for microscopy as previously described [35]. Images were GSI-IX chemical structure detected using a Zeiss Axiovert 200 inverted

microscope and captured using a Hamamatsu ORCA-R2 digital camera. Microscopy based quantification of EPEC intimate adherence (binding index) was performed as previously selleckchem described [67]. Briefly, GFP positive bacteria (which were identified by GFP fluorescence) that were associated with actin pedestals were quantified. At least 50 cells were examined per sample. β-lactamase reporter assays Type III effector-TEM1 fusion reporter assays for EPEC strains were performed as previously described [42] with minor modifications. Briefly, HeLa cells (seeded to confluence in 96 well, black, clear bottom plates [Costar 3603]) were infected with a MOI of approximately 50 for 2 hours using bacteria that

had been pre-activated in DMEM +10% FBS for 2 hours at 37°C, 5% CO2. After 1 hour of infection, IPTG was added to a final concentration of 0.5 mM. The infected cells were gently washed twice with DMEM and then loaded with CCF2/AM using a Toxblazer kit (Invitrogen). The 96 3-oxoacyl-(acyl-carrier-protein) reductase well plate was incubated for 90 min in the dark and then placed in a Victor X plate reader (Perkin Elmer) set to read fluorescence using an excitation filter for 405 nm and emission filters for 460 nm (blue signal)/530 nm (green signal). Blue/green signal ratios and statistical significance (two sided Student’s t test) were calculated as previously described [42]. The presented data are mean values of the results from three experiments. Protein electrophoresis and Immunoblotting All protein samples were separated by SDS-PAGE as described [68].

The liver is very sensitive to Fas-induced apoptosis Administrat

The liver is very sensitive to PFT�� cell line Fas-induced apoptosis. Administration anti-Fas agonistic antibody Savolitinib Jo-2 to mice leads to rapid death of the animals due to fulminant hepatitis, mimicking certain forms of acute liver failure (ALF) in humans [5]. Fas (CD95/APO-1), a 43-kDa cell surface glycoprotein, belongs to the tumor necrosis factor receptor superfamily, and mediates apoptosis upon binding with its cognate ligand, or artificially with specific agonistic antibodies. Communication between cells and the extracellular matrix (ECM) is achieved through integrins

and the associated integrin proximal adhesion molecules. Through multiple protein-protein interactions and signaling events, these molecules transmit signals from the ECM to the interior of the cell and regulate many fundamental cellular processes. Integrin-linked kinase (ILK) is a β1- and β3-integrin-interacting cell matrix adhesion protein that has been shown to be crucial for a number of cellular processes such as survival, differentiation, proliferation, migration, and angiogenesis [6–8]. Previous studies VX-689 clinical trial in our lab have shown that acute elimination of ILK by injection of adenovirus expressing Cre recombinase in the tail vein of ILKflox/flox mice led to massive hepatocyte apoptosis [9]. Genetic ablation of ILK also results in some degree of apoptosis

[10] but also to an enhancement of hepatocyte proliferation, suggesting that ILK might be playing a role in hepatocyte survival. This study was undertaken to test the role of ILK in hepatocyte survival and response to injury using a Jo-2-induced apoptosis model. Here we report that genetic ablation of ILK from hepatocytes protects from Jo-2 induced apoptosis due to upregulation of survival signaling mainly ERK and NFκB signaling. Methods Generation of liver specific ILK/liver-/- mice ILK floxed animals were generated as described previously [10] and donated by Drs. Niclosamide René St. Arnaud (Shriners Hospital and McGill University, Montréal) and Shoukat Deodhar (British Columbia Cancer Agency and Vancouver Hospital, Jack Bell Research Center, Vancouver),

and mated with AFP-enhancer-albumin-promoter-Cre-recombinase-expressing mice which were kindly provided by Dr. Klaus Kaestner (University of Pennsylvania). The off-spring were genotyped as described previously [11] and the ILK-floxed/floxed Cre-positive mice were considered to be ILK-knockout (ILK KO), while their Cre-negative siblings were used as controls. All animals were housed in the animal facility of the University of Pittsburgh in accordance with the guidelines of the Institutional Animal Use and Care Committee of the University of Pittsburgh. Induction of apoptosis For survival experiments, male 30 week-old ILK KO (n = 10) and control mice (n = 10) received a single intraperitoneal injection of the agonistic anti-Fas monoclonal antibody Jo-2 (BD Pharmingen, San Diego, CA) at the lethal dose (0.

1995) ) The squared length of the transition dipole moment is pro

1995).) The squared length of the transition dipole moment is proportional to the AZD6244 supplier extinction coefficient of the molecule for the given absorbance band. The specific transition dipole moment for the given transition determines not only the strength of the absorption but also the ability of the molecule to interact with polarized light, and sets the conditions for intermolecular interactions as well. For linearly

polarized light, the absorbance is proportional to the square of the scalar product of the electric vector (E) of the light and the transition dipole vector (μ), i.e., the absorbance is proportional to E 2 μ2 cos2 α, where α is the angle between the two vectors. This is the basis of all LD Tucidinostat mouse measurements. In circularly polarized light spectroscopy, i.e., for CD, the interaction between the light and the sample also depends, albeit often in a complex buy PND-1186 manner, on the orientations of the transition dipole moments of the molecules that compose the structure. Linearly and circularly polarized light: LD and CD measurements For linearly polarized light (often called plane-polarized light), the electric vector E (“the light vector”)

oscillates sinusoidally in a direction (plane) which is called the polarization direction (plane). For circularly polarized light, the magnitude of E remains constant, but it traces out a helix as a function of time. In accordance with the convention used in CD spectroscopy, in the right and the left circularly polarized light beams,

when viewed by an observer looking toward the light source, the end-point of E rotates clockwise and counterclockwise, respectively. (See supplemental Movie 1.) On using the principle of superposition, it can easily be shown that circularly and linearly polarized light beams can be represented as the sum of two orthogonal linearly polarized beams, in which the amplitudes are equal and the phases are shifted exactly by a quarter or a half of the wavelength, respectively (supplemental movie 1). This principle can be used for producing mafosfamide orthogonal linearly (e.g., vertically and horizontally) or circularly (left- and right-handed) polarized beams. In most commercially available dichrographs and home-built setups, this is done by using a photoelastic modulator (PEM) that operates at high frequency, typically at 50 kHz. In this way, the polarization state of the measuring beam is modulated sinusoidally. In order to measure the dichroism of the sample, the signal of the detector is demodulated by a proper circuit, usually an AC amplifier locked at the frequency and phase of the polarization modulation. This yields a difference, or differential polarization (DP) signal, ΔI.

Instituto di Ecologia Applicata, Rome, Italy http://​www ​ieaita

Instituto di Ecologia Applicata, Rome, Italy. http://​www.​ieaitaly.​org/​samd/​ (last update June 2008) Sathiamurthy

E, Voris HK (2006) Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. Nat Hist J Chulalongkorn University, Supplement 2:1–43. Maps available at http://​fmnh.​org/​research_​collections/​zoology/​zoo_​sites/​seamaps/​ Scholes RJ, Mace GM, Turner W, Geller GN, Jurgens N, Larigauderie A, Muchoney D, Walther BA, Mooney HA (2008) Ecology—toward a global biodiversity observing system. Science 321:1044–1045PubMed Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu Rev Ecol Evol selleck Syst 39:1–19 Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436 Sheridan JA (2009) Reproductive variation corresponding to breeding season length in three tropical frog species. J Trop BKM120 mouse Ecol 25:583–592 Sodhi NS, Brook BW (2006) Southeast Asian biodiversity in crisis. Cambridge University Press, Cambridge Sodhi NS, Brook BW, Bradshaw CJA (2007) Tropical conservation biology. Blackwell, Oxford Sodhi NS, Lee TM, Sekercioglu CH, Webb EL, Prawiradilaga

DW, Lohman DJ, Pierce NE, Diesmos AC, Rao M, Ehrlich PR (2010) Local people value environmental services provided by forested parks. Biodivers Conserv Montelukast Sodium (this volume). doi:10.​1007/​s10531-009-9745-9 Sosdian S, Rosenthal Y (2009) Deep-sea temperature and ice volume changes SN-38 across the Pliocene-Pleistocene

climate transitions. Science 325:306–310PubMed Spalding MD, Green EP, Ravilious C (2001) World atlas of coral reefs. University of California Press, Berkeley Srikwan S, Woodruff DS (2000) Genetic erosion in isolated small mammal populations following rain forest fragmentation. In: Young A, Clarke G (eds) Genetics demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 149–172 Srikwan S, Jakobsson M, Albrecht A, Dalkilic M (2006) Trust establishment in data sharing: an incentive model for biodiversity information systems. TrustCol 2006:1–8 Sterling EJ, Hurley MM, Minh LD (2006) Vietnam: a natural history. Yale University Press, New Haven Taylor D (2010) Biomass fires, humans and climate change in Southeast Asia. Biodivers Conserv (this volume) doi:10.​1007/​s10531-009-9756-6 Tougard C, Montuire S (2006) Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: focus on fossil faunas from Thailand. Quat Sci Rev 25:126–141 UNDP (2008) Tonle Sap conservation project. Project Fact Sheet 01/2008 (project 00038552). UNDP Cambodia van Steenis CGGJ (1950) The delimitation of Malesia and its main plant geographical divisions.

This value was then multiplied by water obtained from CHO, protei

This value was then multiplied by water obtained from CHO, protein and fat oxidation (0.60,

0.41 and 1.07 mL water/g, respectively) [23]. To improve the quality of the collected data and to avoid any problems or under reporting of food or fluids consumed, one of the researchers resided at the camp for the entire assessment/observational period. Meals were prepared whilst athletes trained and MI-503 served at the same times every day: Breakfast was at 09:30, after the morning training session, lunch at 13:30 and dinner at 19:30. On some occasions, athletes also had an afternoon snack which was served at 16:00. Nude BM was measured on the first day of the assessment period (as well as for two days prior to the start of the assessment period to ensure a representative baseline) and at the end of the 7 day period, before the consumption of any food or drink. The weighed dietary intake data was used to determine EI and diet composition using a

VRT752271 manufacturer computerised version of the food composition tables of McCance and Widdowson as revised by Holland et al. [24]. However, for foods more specifically consumed by Ethiopians, food tables published by the Ethiopian Ministry of Health of Ethiopia were used [25]. No samples were retained for further analysis due to local regulations. Food labels were also collected where possible, mainly for imported foods. Statistical analysis Data was expressed as the mean ± standard deviation, as appropriate following a test for the normality of distribution. Paired t-tests were used to compare EI vs. EE and starting BM vs. final BM. Statistical significance was declared when P < 0.05. All statistical analysis was completed using the software package SPSS, version 15.0 (SPSS, ifenprodil Inc., Chicago,

IL, USA). Results Training typically consisted of two sessions per day. The morning run (normally at 07.00) took place before breakfast and included a session at moderate or fast pace (16-20 km/hr) for 10 to 20 km depending on the instructions given by the coach and/or weather conditions. The afternoon session, prior to dinner (17.00), was typically an easy run over 6 to 10 km at a slower pace (10-15 km/hr), unless morning weather conditions had been adverse. If this was the case, athletes reversed their sessions. Warming up periods were 15 min and cooling down periods were more than 20 min. Warm up and cool down consisted of standard stretching exercises and athletes carried out most of their sessions as a group. In some instances, some athletes trained alone. Athletes completed high intensity interval training sessions 2-3 times per week and one 20-25 km run at near race speed for each athlete. Recovery time between training sessions was spent at the camp sleeping, eating, socialising, watching television or washing their clothes. Some athletes went home on weekends and completed individual training runs as advised by their coach/manager. The EE of the athletes as estimated using PAR is shown in Table 2.

PPC 6714 and Chlamydomonas reinhardtii with variable PSI/PSII sto

PPC 6714 and Chlamydomonas reinhardtii with variable PSI/PSII stoichiometries. Sapanisertib Photosynth Res 53:141–178CrossRef Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta (BBA) 1797(4):466–475. doi:10.​1016/​j.​bbabio.​2010.​01.​001 CrossRef Niyogi KK (1999) PHOTOPROTECTION

REVISITED: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi:10.​1146/​annurev.​arplant.​50.​1.​333 PubMedCrossRef Niyogi KK, Björkman O, Grossman A (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167PubMedCrossRef Niyogi KK, Shih C, Soon Chow W, Pogson B, DellaPenna D, Björkman O (2001) Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67(1):139–145PubMedCrossRef Ohad I, Keren N, Zer H, Gong H, Mor TS, Gal A, Tal S, Domovich Y (1994) Light-induced degradation of the photosystem II reaction centre

D1 protein in vivo: an integrative approach. In: Baker NR (ed) Photoinhibition of photosynthesis: from ��-Nicotinamide molecular mechanisms to the field. BIOS Scientific Publishers, Oxford, pp 161–178 Olaiza M, La Roche J, Kolber Z, Falkowski PG (1994) Non-photochemical fluorescence quenching and the S3I-201 price diadinoxanthin cycle in a marine diatom. Photosynth Res 41:357–370CrossRef Papageorgiou G, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94(2):275–290PubMedCrossRef Pascal A, ZhenFeng L, Broess K, Oort B (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436(7):134–137PubMedCrossRef Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550PubMedCrossRef Portis A (1992) Regulation of ribulose 1,5-bisphosphate carboxylase Alectinib oxygenase activity. Annu Rev Plant Physiol Plant

Mol Biol 43:415–437CrossRef Portis A (2003) Rubisco activase—Rubisco’s catalytic chaperone. Photosynth Res 75(1):11–27PubMedCrossRef Raszewski G, Renger T (2008) Light harvesting in photosystem II core complexes is limited by the transfer to the trap: Can the core complex turn into a photoprotective mode? J Am Chem Soc 130(13):4431–4446PubMedCrossRef Robinson S, Portis A (1988) Involvement of stromal ATP in the light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase in intact isolated chloroplasts. Plant Physiol 86:293–298PubMedCrossRef Ruban AV, Berera R, Ilioaia C, van Stokkum I, Kennis J, Pascal A, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants.

IET Sys Biology 2009, 3:203–218 CrossRef 62 Mamnun YM, Pandjaita

IET Sys Biology 2009, 3:203–218.CrossRef 62. Mamnun YM, Pandjaitan R, Mahé Y, Delahodde A, Kuchler K: The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo . Mol Microbiol 2002, 46:1429–1440.PubMedCrossRef 63. Takemori Y, Sakaguchi A, Matsuda S, Mizukami Y, Sakurai H: Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Entinostat mouse Saccharomyces cerevisiae . Mol Genet Genomics 2006, 275:89–96.PubMedCrossRef 64. Marchler G, Schuller C, Adam G, Ruis H: A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 1993,

12:1997–2003.PubMed 65. Schuller C, Brewster JL, learn more Alexander MR, Gustin MC, Ruis H: The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 1994, 13:4382–4389.PubMed 66. Berry DB, Gasch AP: Stress-activated genomic expression changes serve

a preparative role for impending stress in yeast. Mol Biol Cell 2008, 19:4580–4587.PubMedCrossRef 67. Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H: Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. J Biosci Bioeng 2007, 104:163–170.PubMedCrossRef 68. Watanabe M, Watanabe D, Akao T, Shimoi H: Overexpression of MSN2 in a sake yeast strain promotes

ethanol tolerance Nintedanib (BIBF 1120) and increases ethanol production in sake brewing. J Biosci Bioeng 2009, 107:516–518.PubMedCrossRef 69. Wu BIBF 1120 supplier WS, Li WH: Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics 2008, 9:439.PubMedCrossRef 70. Moskvina E, Schuller C, Maurer CT, Mager WH, Ruis H: A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 1998, 14:1041–1050.PubMedCrossRef 71. Kurtzman CP, Robnett CJ: Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998, 73:331–371.PubMedCrossRef 72. Rozen S, Skaletsky H: Bioinformatics methods and protocols. In Methods in molecular biology. Edited by: Krawetz S, Misener S. Humana Press, Totowa; 2000:365–386. 73. Fisk DG, Ball CA, Dolinski K, Engel SR, Hong EL, Issel-Tarver L, Schwartz K, Sethuraman A, Botstein D, Cherry JM: Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 2006, 23:857–865.PubMedCrossRef 74. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Earle-Hughes J, Snesrud E, Lee N, Quackenbush J: A concise guide to cDNA microarray analysis. BioTechniques 2000, 29:548–562.PubMed 75. Staroscik A: Calculator for determining the number of copies of a template. [http://​www.​uri.​edu/​research/​gsc/​resources/​cndna.​html] 2004. 76.